Copied to
clipboard

G = C322D27order 486 = 2·35

2nd semidirect product of C32 and D27 acting via D27/C9=S3

non-abelian, supersoluble, monomial

Aliases: C322D27, C33.2D9, (C3×C27)⋊4S3, (C3×C9).2D9, C32⋊C273C2, C3.3(C27⋊S3), (C32×C9).10S3, C32.15(C9⋊S3), C9.1(He3⋊C2), C3.2(C322D9), (C3×C9).18(C3⋊S3), SmallGroup(486,51)

Series: Derived Chief Lower central Upper central

C1C3C32⋊C27 — C322D27
C1C3C32C3×C9C32×C9C32⋊C27 — C322D27
C32⋊C27 — C322D27
C1C3

Generators and relations for C322D27
 G = < a,b,c,d | a3=b3=c27=d2=1, ab=ba, cac-1=ab-1, dad=a-1, bc=cb, bd=db, dcd=c-1 >

Subgroups: 538 in 58 conjugacy classes, 18 normal (10 characteristic)
C1, C2, C3, C3, S3, C6, C9, C9, C32, C32, C32, D9, C3×S3, C3⋊S3, C27, C3×C9, C3×C9, C3×C9, C33, D27, C3×D9, C9⋊S3, C3×C3⋊S3, C3×C27, C32×C9, C3×D27, C3×C9⋊S3, C32⋊C27, C322D27
Quotients: C1, C2, S3, D9, C3⋊S3, D27, C9⋊S3, He3⋊C2, C322D9, C27⋊S3, C322D27

Smallest permutation representation of C322D27
On 54 points
Generators in S54
(1 19 10)(3 12 21)(4 22 13)(6 15 24)(7 25 16)(9 18 27)(29 47 38)(30 39 48)(32 50 41)(33 42 51)(35 53 44)(36 45 54)
(1 19 10)(2 20 11)(3 21 12)(4 22 13)(5 23 14)(6 24 15)(7 25 16)(8 26 17)(9 27 18)(28 37 46)(29 38 47)(30 39 48)(31 40 49)(32 41 50)(33 42 51)(34 43 52)(35 44 53)(36 45 54)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)
(1 50)(2 49)(3 48)(4 47)(5 46)(6 45)(7 44)(8 43)(9 42)(10 41)(11 40)(12 39)(13 38)(14 37)(15 36)(16 35)(17 34)(18 33)(19 32)(20 31)(21 30)(22 29)(23 28)(24 54)(25 53)(26 52)(27 51)

G:=sub<Sym(54)| (1,19,10)(3,12,21)(4,22,13)(6,15,24)(7,25,16)(9,18,27)(29,47,38)(30,39,48)(32,50,41)(33,42,51)(35,53,44)(36,45,54), (1,19,10)(2,20,11)(3,21,12)(4,22,13)(5,23,14)(6,24,15)(7,25,16)(8,26,17)(9,27,18)(28,37,46)(29,38,47)(30,39,48)(31,40,49)(32,41,50)(33,42,51)(34,43,52)(35,44,53)(36,45,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54), (1,50)(2,49)(3,48)(4,47)(5,46)(6,45)(7,44)(8,43)(9,42)(10,41)(11,40)(12,39)(13,38)(14,37)(15,36)(16,35)(17,34)(18,33)(19,32)(20,31)(21,30)(22,29)(23,28)(24,54)(25,53)(26,52)(27,51)>;

G:=Group( (1,19,10)(3,12,21)(4,22,13)(6,15,24)(7,25,16)(9,18,27)(29,47,38)(30,39,48)(32,50,41)(33,42,51)(35,53,44)(36,45,54), (1,19,10)(2,20,11)(3,21,12)(4,22,13)(5,23,14)(6,24,15)(7,25,16)(8,26,17)(9,27,18)(28,37,46)(29,38,47)(30,39,48)(31,40,49)(32,41,50)(33,42,51)(34,43,52)(35,44,53)(36,45,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54), (1,50)(2,49)(3,48)(4,47)(5,46)(6,45)(7,44)(8,43)(9,42)(10,41)(11,40)(12,39)(13,38)(14,37)(15,36)(16,35)(17,34)(18,33)(19,32)(20,31)(21,30)(22,29)(23,28)(24,54)(25,53)(26,52)(27,51) );

G=PermutationGroup([[(1,19,10),(3,12,21),(4,22,13),(6,15,24),(7,25,16),(9,18,27),(29,47,38),(30,39,48),(32,50,41),(33,42,51),(35,53,44),(36,45,54)], [(1,19,10),(2,20,11),(3,21,12),(4,22,13),(5,23,14),(6,24,15),(7,25,16),(8,26,17),(9,27,18),(28,37,46),(29,38,47),(30,39,48),(31,40,49),(32,41,50),(33,42,51),(34,43,52),(35,44,53),(36,45,54)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)], [(1,50),(2,49),(3,48),(4,47),(5,46),(6,45),(7,44),(8,43),(9,42),(10,41),(11,40),(12,39),(13,38),(14,37),(15,36),(16,35),(17,34),(18,33),(19,32),(20,31),(21,30),(22,29),(23,28),(24,54),(25,53),(26,52),(27,51)]])

54 conjugacy classes

class 1  2 3A3B3C3D3E3F3G3H6A6B9A···9I9J···9O27A···27AA
order1233333333669···99···927···27
size1811122266681812···26···66···6

54 irreducible representations

dim1122222366
type+++++++
imageC1C2S3S3D9D9D27He3⋊C2C322D9C322D27
kernelC322D27C32⋊C27C3×C27C32×C9C3×C9C33C32C9C3C1
# reps11316327426

Matrix representation of C322D27 in GL5(𝔽109)

450000
663000
000046
00100
000640
,
10000
01000
004500
000450
000045
,
70000
6078000
00100
000450
000063
,
108106000
01000
00100
000046
000640

G:=sub<GL(5,GF(109))| [45,6,0,0,0,0,63,0,0,0,0,0,0,1,0,0,0,0,0,64,0,0,46,0,0],[1,0,0,0,0,0,1,0,0,0,0,0,45,0,0,0,0,0,45,0,0,0,0,0,45],[7,60,0,0,0,0,78,0,0,0,0,0,1,0,0,0,0,0,45,0,0,0,0,0,63],[108,0,0,0,0,106,1,0,0,0,0,0,1,0,0,0,0,0,0,64,0,0,0,46,0] >;

C322D27 in GAP, Magma, Sage, TeX

C_3^2\rtimes_2D_{27}
% in TeX

G:=Group("C3^2:2D27");
// GroupNames label

G:=SmallGroup(486,51);
// by ID

G=gap.SmallGroup(486,51);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,265,1195,218,548,4755,453,11669]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^27=d^2=1,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d=a^-1,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽